50(1+(4/12))^120=x

Simple and best practice solution for 50(1+(4/12))^120=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50(1+(4/12))^120=x equation:



50(1+(4/12))^120=x
We move all terms to the left:
50(1+(4/12))^120-(x)=0
We add all the numbers together, and all the variables
-x+50(1+(+4/12))^120=0
We add all the numbers together, and all the variables
-1x+50(1+(+4/12))^120=0
We multiply all the terms by the denominator
-1x*12))^120+50(1+(+4=0
Wy multiply elements
-12x^2+4=0
a = -12; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-12)·4
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-12}=\frac{0-8\sqrt{3}}{-24} =-\frac{8\sqrt{3}}{-24} =-\frac{\sqrt{3}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-12}=\frac{0+8\sqrt{3}}{-24} =\frac{8\sqrt{3}}{-24} =\frac{\sqrt{3}}{-3} $

See similar equations:

| 6x+5x=8+6 | | 3x+5+8=46 | | 9x-(2x-3)=5x(x+2) | | 4(3)^5x-8=253 | | 152+4x+80=180 | | 35x-1=x+90 | | 6(3)-y=0 | | 25x-30=180 | | 0=5x^2+2x-3 | | 7+9+t)=84 | | (x-119)/6=7 | | Y+7x-20=180 | | 6+2x/8=10 | | 35u+18u-5u^2=0 | | d/10+780+d/6=1080 | | x^2*2^31=10000 | | y/92+12=122 | | 1000*1.2^(x)=3000 | | 2x+6=3x-15+6x | | (x-1)=0.5x-0.3 | | y=1/1-0.4y | | 28+4x=72 | | -0.10(15)+0.15x=0.05(x-14) | | 3(2x-3)=2(2x+5)=0 | | C+(c+5)=35 | | 9+5a=36 | | 5(x=4)-(3x=20)=-10 | | 5x-3=17+x | | 5y-6y-3y-5=-15-1 | | X4-10x+12=0 | | F(x)=6+4x+5 | | 4y-3=17-6y |

Equations solver categories